

Tether system technologies and nanosatellites

Zabolotnov Yu.M. yumz@yandex.ru

Tether technologies make it possible to create lightweight and at the same time extended structures in orbit, which can have many useful applications.

For example:

1. Measuring systems for monitoring gravitational, magnetic fields, etc.
2. Long range optical interferometer for deep space surveillance.
3. Atmospheric monitoring systems.
4. Surface monitoring systems for planets with higher resolution.
5. Long geostationary systems.
6. Gravitational, aerodynamic and magnetic stabilization of NS.
7. Changes in the orbital parameters of NS using electrodynamic tether systems.
8. Debris of satellites from orbit using electrodynamic tether systems.
9. Deployment and use of large solar sails.
10. Creation and use of power plants in orbit.

The lecture the issues of dynamics and motion control during the deployment of tether groupings of NS of various configurations is considered

Lecture plan:

1. Analysis of dynamics and control during the deployment of a tether system consisting of two satellites.
2. Deployment of a vertical (radial) orbital grouping consisting of several satellites.
3. Using an electrodynamic tether system to change the orbital parameters of satellites, including removing them from orbit.
4. Dynamics of the formation of a triangular tether grouping of satellites.

The formation of the satellite tether system will allow:

1. To reduce the angular speed of the system
2. Provide gravitational stabilization of the system
3. Provide stabilization of angular motion of satellites relative to their centers of mass

Figure 1
Main stages of deployment:

1. Separation from the base spacecraft (SC)
2. Separation of nanosatellites
3. Controlled system deployment
4. Stabilization of the system with respect to the vertical

The equations of motion for the mass centers of the NS in the geocentric fixed coordinate system:

$$
\begin{equation*}
m_{k} \mathbf{R}_{k}=\mathbf{G}_{k}+\mathbf{T}_{k}, \quad k=1,2 \tag{1}
\end{equation*}
$$

where $\mathbf{G}_{k}=-K m \mathbf{R}_{k} / R_{k}^{3}$ - gravitational force, \mathbf{T}_{k} - tension force of the tether,
R_{k} - vectors for the center of mass of NS, $\mathrm{T}_{1}=-\mathrm{T}_{2}$
The tension force is calculated Hooke's law :

$$
T=\left\{\begin{array}{ccc}
C \frac{R_{t}-l}{l}, & \text { if } & R_{t}-l \geq 0 \tag{2}\\
0, & \text { if } & R_{t}-l<0
\end{array}\right.
$$

where $C=E A$ - the stiffness of the tether, E - elastic modulus, A - tether cross-sectional area, l - undeformed length of the tether,
$R_{\mathrm{f}}=\left|\mathbf{R}_{b}-\mathbf{R}_{a}\right|, \quad \mathbf{R}_{a}=\mathbf{R}_{1}+\mathbf{r}_{1}, \quad \mathbf{R}_{b}=\mathbf{R}_{2}+\mathbf{r}_{2}$,
r_{12} - the vectors of attachment points of the tether relative to the centers of mass of the NS (Figure 1).

Dynamic Euler equations :

$$
\begin{align*}
& J_{x}^{(k)} \frac{d \omega_{x}^{(k)}}{d t}+\omega_{y}^{(k)} \omega_{z}^{(k)}\left(J_{z}^{(k)}-J_{y}^{(k)}\right)=M_{x}^{(k)} \\
& J_{y}^{(k)} \frac{d \omega_{y}^{(k)}}{d t}+\omega_{x}^{(k)} \omega_{z}^{(h)}\left(J_{x}^{(k)}-J_{z}^{(k)}\right)=M_{y}^{(k)} \tag{3}\\
& J_{z}^{(k)} \frac{d \omega_{z}^{(k)}}{d t}+\omega_{x}^{(k)} \omega_{y}^{(k)}\left(J_{y}^{(k)}-J_{x}^{(k)}\right)=M_{z}^{(k)}
\end{align*}
$$

where $\omega_{x}^{(k)}, \omega_{y}^{(k)}, \omega_{z}^{(k)}$ - angular velocities of the NS, $J_{x}^{(k)}, J_{y}^{(k)}, J_{z}^{(k)}$ and $M_{x}^{(k)}, M_{y}^{(k)}, M_{z}^{(k)}$ - moments of inertia and forces of NS in the main related coordinate systems.

Kinematic Poisson equations:

$$
\begin{equation*}
\dot{e}_{\mathrm{x} k}=\omega_{k} \times \mathbf{e}_{x h}, \quad \dot{e}_{y k}=\omega_{k} \times \mathbf{e}_{y k}, \quad \dot{e}_{\bar{z} \hat{}}=\omega_{k} \times \mathbf{e}_{z k} \tag{4}
\end{equation*}
$$

where $\omega_{k}=\left(\omega_{k}^{(k)}, \omega_{y}^{(k)}, \omega_{2}^{(k)}\right), \mathbf{e}_{\mathrm{e}_{x}}, \mathbf{e}_{\mathrm{y}_{\mathrm{k}}}, \mathbf{e}_{\mathrm{e}_{k}}$ - the unit vectors directed along the main axes of the related coordinate systems.

SEPARATION OF THE NANOSATELLITES

The calculation of the speeds of the NS after their separation with a relative speed \mathbf{V}_{r}

$$
\begin{equation*}
\mathbf{V}_{1}=\mathbf{V}_{2}+\mathbf{V}_{r}, \quad \mathbf{V}_{2}=\mathbf{V}_{c}+\frac{m_{1}}{m_{1}+m_{2}} \mathbf{V}_{r} \tag{7}
\end{equation*}
$$

where \mathbf{V}_{c} - the speed of the center of mass of the system to the separation

The calculation of the angular speeds of the satellites after their separation

$$
\begin{equation*}
\omega_{x, y, z}^{(1,2)}=\omega_{x, y, z}^{(0)}+\frac{1}{J_{K, y, z}^{(1,2)}}\left(\mathrm{r}_{1,2} \times \mathrm{S}_{1,2}\right)_{x, y, z} \tag{8}
\end{equation*}
$$

$\omega_{x, y, z}^{(0)}$ and $\omega_{x, y, z}^{(12)} \quad$ - angular velocities of satellites before and after their separation,
$\left|\mathbf{S}_{12}\right|=S \quad$ the impulse in the separation, $\mathbf{S}_{2}=-\mathbf{S}_{1}, \mathbf{S}_{2}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \mathbf{V}_{r}$.
When calculating the linear and angular velocities of nanosatellites, the laws of conservation of impulse and angular impulse are used

The equations that model the release tether:

$$
\begin{equation*}
m_{2} V_{l}=T-F_{u}, \bar{l}=V_{l} \tag{9}
\end{equation*}
$$

where $F_{u}=k_{1} V_{l}$ - force in the control mechanism,
k_{v} - program parameter, $\quad V_{l}$-speed of tether
For smooth braking of the tether the program is used:

$$
k_{v}=\left\{\begin{array}{cl}
k_{v 1} & \text { if } l \leq l_{1} \tag{10}\\
k_{v 1}+\frac{l-l_{1}}{l_{\text {end }}-l_{1}}\left(k_{v 2}-k_{v 1}\right) & \text { if } l_{1}<l \leq l_{\operatorname{ena}}
\end{array}\right.
$$

$k_{v 12}$ - the parameters of the control law.
if $l \leq l_{1}$ - fast system deployment
if $l_{1}<l \leq l_{\text {ena }}$ - braking and provision at the end of deployment $\quad V_{l} \approx 0\left(V_{l}>0\right)$.

Data: $m_{1}=m_{2}=2 \mathrm{~kg}, L_{\text {end }}=1 \mathrm{~km}, C=7000 \mathrm{H}, \quad H=400 \mathrm{~km}, \quad V_{r}=0.25 \mathrm{~m} / \mathrm{s}$,

$$
\begin{gathered}
\omega_{x}=\omega_{y}=\omega_{z}=0.05 \mathrm{~s}^{-1} \\
x_{o}, k n
\end{gathered}
$$

Fig. 2 The trajectories of the satellites with respect to the vertical

Fig. 3 The deflection angles of the satellites relative to the tether

One satellite with an offset center of mass relative to its longitudinal axis

Fig. 3 The deviation angle of tether from vertical

Analytical formula for the angle of deviation of the tether from the vertical

$$
\begin{equation*}
\operatorname{tg} \vartheta_{s}=-2 m_{s} \frac{\omega_{h}}{k_{v 1}} \tag{11}
\end{equation*}
$$

The main problems of the tether system formation:

1. The choice of a simple program control without feedback
2. Providing restrictions on the tension force
$T>0$
3. Providing restrictions on the angular movement of satellites
4. Providing restrictions on the speed of the tether

$$
V_{\text {end }} \approx 0\left(V_{l}>0\right)
$$

Fig. 1 Tether system

Methods of formation: "slow" and "fast" deployment

Lagrange equations:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T_{c}}{\partial \dot{q}_{j}}\right)-\frac{\partial T_{c}}{\partial q_{j}}=-\frac{\partial P}{\partial q_{j}}+Q_{j} \tag{1}
\end{equation*}
$$

Generalized coordinate $q_{1}=s, q_{2}=\theta$
T_{c} and P - kinetic and potential energy.

$$
\begin{align*}
& \qquad T_{c}=\frac{1}{2} \sum_{i=k}^{n}\left(\dot{x}_{i}^{2}+\dot{y}_{i}^{2}\right), P=\sum_{i=k}^{n} P_{i} \tag{2}\\
& P_{i}=-K m_{i} / r_{i}, r_{i}=\sqrt{r_{1}^{2}+[s+(i-k) \Delta L]^{2}-2 r_{1}[s+(i-k) \Delta L] \cos \theta} \\
& x_{i}=x_{o i} \cos u-y_{o i} \sin u, y_{i}=x_{o i} \sin u+y_{o i} \cos u, \\
& x_{o i}=r_{1}-[s+(i-k) \Delta L] \cos \theta, y_{o i}=-[s+(i-k) \Delta L] \sin \theta \\
& \Delta L=L_{\text {end }} /(n-1), i=k, k+1, \ldots n
\end{align*}
$$

Model for building a nominal program:

$$
\begin{aligned}
& \ddot{s}=\left[m_{k}(s)(\Omega+\dot{\theta})^{2}+m_{k}(s) \Omega^{2}\left(3 \cos ^{2} \theta-1\right)-T\right] / M_{k} \\
& \ddot{\theta}=-2 m_{s}(s) \dot{s}(\Omega+\dot{\theta}) / J_{k}(s)-1.5 \Omega^{2} \sin 2 \theta
\end{aligned}
$$

Where

$$
\begin{aligned}
& M_{k}=m(n-k)+m_{n} \\
& m_{k}(s)=m_{n}[s+(n-k) \Delta L]+m \sum_{i=k}^{n-1}[s+(i-k) \Delta L] \\
& J_{k}(s)=m_{n}[s+(n-k) \Delta L]^{2}+m \sum_{i=k}^{n-1}[s+(i-k) \Delta L]^{2}
\end{aligned}
$$

Dynamic deployment program:

$$
\begin{equation*}
T=v_{e} \Omega^{2}[a(s-\Delta L)+b s / \Omega+3 \Delta L] \tag{4}
\end{equation*}
$$

Where

$$
v_{e}=m_{k}(\Delta L)=m_{n}(n+1-k)+m \sum_{i=k}^{n-1}(i+1-k)
$$

NUMERICAL RESULTS

Fig. 2 Tether speed

Fig. 3 Trajectory of the two lower NS at the last stage of deployment

Fig. 4 Tension force

System Deployment Features

1. Deployment consists of n stages
2. Each stage consists of acceleration and deceleration sections
3. After completion of each stage, the system is located near the vertical
4. All satellites are located almost on the same line
5. After the last stage, the system is located near the vertical and has zero speed

Equivalent tether density: the mass of satellites is distributed evenly over the tether

$$
\begin{equation*}
\rho=m(n-2) / L_{\text {end }} \tag{5}
\end{equation*}
$$

Where n - number of satellites; m - mass of nanosatellites;
$L_{\text {end }}$ - total tether length
Equations of motion of the tether system:

$$
\begin{align*}
& \left(m_{n}+\rho L\right) \ddot{L}=\left(m_{n}+\rho L / 2\right) L F_{11}-T-\rho \dot{L}^{2} \\
& \left(m_{n}+\rho L / 3\right) L^{2} \ddot{\theta}=-2\left(m_{n}+\rho L / 2\right) L \dot{L} F_{21}+\left(m_{n}+\rho L / 3\right) L^{2} F_{22} \tag{6}
\end{align*}
$$

Where

$$
F_{11}=\dot{\theta}^{2}+2 \Omega \dot{\theta}+3 \Omega^{2} \cos ^{2} \theta, F_{21}=\dot{\theta}+\Omega, F_{22}=-1.5 \Omega^{2} \sin 2 \theta
$$

Nominal deployment program:

$$
\begin{equation*}
T=\left(m_{n}+\rho L / 2\right) \Omega^{2}\left[a\left(L-L_{\text {end }}\right)+b \dot{L} / \Omega+3 L_{\text {end }}\right] \tag{7}
\end{equation*}
$$

Where m_{n} - mass of the lower nanosatellite, a, b - program parameters

You can test the features of the "fast" deployment program by using the following model:

$$
\begin{equation*}
\frac{d \mathbf{r}_{i}}{d t}=\mathbf{V}_{i}, \quad m_{i} \frac{d \mathbf{V}_{i}}{d t}=\mathbf{G}_{i}+\mathbf{T}_{i}-\mathbf{T}_{i+1}, i=1,2, \ldots, n \tag{8}
\end{equation*}
$$

Where
$\mathbf{r}_{i}, \mathbf{V}_{i}, m_{i}$ - radiuses, velocities, masses of satellites,
$\mathbf{G}_{i}, \mathbf{T}_{i}$ - the gravitational forces and the tension forces of the tether
The tension forces of the tether

$$
\mathbf{T}_{i}=\left\{\begin{array}{ll}
c\left(\gamma_{i}-1\right) \Delta \mathbf{L}_{i} / \Delta L_{0 i} \text { if } \gamma_{i} \geq 1 \tag{9}\\
0, & \text { if } \gamma_{i}<0
\end{array}, \quad \gamma_{i}=\frac{\Delta L_{i}}{\Delta L_{0 i}}\right.
$$

Where
c - the stiffness of the tether, $\quad \gamma_{i}$ - relative deformation of the tether section

$$
\Delta \mathbf{L}_{i}=\mathbf{r}_{i+1}-\mathbf{r}_{i}
$$

THE EQUATIONS OF MOTION IN A GEOCENTRIC COORDINATE SYSTEM FOR TENSILE TETHER

Equations of operation of the control mechanism :

$$
\begin{equation*}
m_{e} \frac{d V}{d t}=T_{1}-F_{c}, \frac{d l}{d t}=V \tag{10}
\end{equation*}
$$

where the parameter m_{e} takes into account the inertia of the control mechanism, V, l - speed and undeformed length of the tether, F_{c} - control force,
T_{1} - tension force on the first section of the tether, counting from the base spacecraft

Control force:

$$
\begin{equation*}
F_{c}=T+p_{L}(l-L)+p_{V}(V-\dot{L}) \tag{11}
\end{equation*}
$$

Where
T - nominal tension force, p_{l}, p_{V}-feedback ratios,
$L, \dot{L} \quad$ - program values of tether length and speed

Fig. 5 The tension force of the tether

Fig. 6 Positions of system in various point in time

Problems of "fast" deployment:

1. Need a rotary mechanism for the separation of the NS
2. It is necessary to have given the speed of separation of the satellite

3. Electrodynamics tether systems (EDTS)

Recently, a very promising application of the electrodynamic tether systems. More than ten real tether experiments have already been conducted in different countries of the world.
In the interaction of the conducting tether with the magnetic field of the Earth, the Lorentz force arises, with which you can control the movement of the system

$$
\mathbf{F}_{l}=I \boldsymbol{\tau} \times \mathbf{B}
$$

Where B-magnetic induction vector, I - current
τ - the unit vector defines the direction of the current

Use cases of the electrodynamic system:

1. Using an insulated conductive tether.
2. Using a bare conductive tether.

Other cases from the point of view of dynamics and control:

1. Vertical (radial) EDTS.
2. Rotating EDTS.

The use of rotating EDTS is due to the fact that vertical systems are not stable at constant current and require additional stabilization

Instability of vertical EDTS

Lorentz force

$$
\begin{equation*}
\mathbf{F}=L(\mathbf{I} \times \mathbf{B}) \tag{1}
\end{equation*}
$$

The moment of the Lorentz force

$$
\begin{equation*}
\mathbf{M}=\mathbf{r}_{D} \times \mathbf{F} \tag{2}
\end{equation*}
$$

Fig. 1

Mathematical model of motion

$$
\begin{align*}
& \ddot{r}-r\left[\dot{\varphi}^{2}+(\dot{\theta}+\omega)^{2} \cos ^{2} \varphi+v^{-1} \omega^{2}\left(3 \cos ^{2} \theta \cos ^{2} \varphi-1\right)\right]=Q_{1} / m_{e} \tag{3}\\
& \ddot{\theta}+\dot{\omega}+2(\dot{\theta}+\omega)(\dot{r} / r-\dot{\varphi} \operatorname{tg} \varphi)+1.5 v^{-1} \omega^{2} \sin 2 \theta=Q_{2} / m_{e} r^{2} \cos ^{2} \varphi \tag{4}\\
& \ddot{\varphi}+2 \dot{\varphi} \dot{r} / r+\left[0.5(\dot{\theta}+\omega)^{2}+1.5 v^{-1} \omega^{2} \cos ^{2} \theta\right] \sin 2 \varphi=Q_{3} / m_{e} r^{2} \tag{5}
\end{align*}
$$

where $\mathrm{r}, \theta, \varphi$-generalized coordinates, $\quad m_{e}=m_{1} m_{2} / m, \quad m_{1,2} \quad$ - masses of NS, $m=m_{1}+m_{2}, \quad \omega=\dot{\vartheta}=\left(K / p^{3}\right)^{0.5} v^{2} \quad$ - orbital angular velocity, $\dot{\omega}=\ddot{\vartheta}=-2 K e \sin \vartheta / p^{3}, \quad v=1+e \cos \vartheta, \quad \vartheta \quad$ - the true anomaly, p - orbit parameter, e-eccentricity of the orbit, $Q_{1,2,3}$ - generalized forces.

Mathematical model of motion

The Earth's magnetic field is a direct dipole

$$
\begin{equation*}
\mathbf{B}=B_{0}\left[\mathbf{e}_{z}-3\left(\mathbf{e}_{z} \cdot \mathbf{e}_{R}\right) \mathbf{e}_{R}\right] \tag{6}
\end{equation*}
$$

where $\mathbf{e}_{R}=\mathbf{R}_{c} / R_{c}, \mathbf{e}_{z}$ - a unit vector directed along the axis of rotation of the Earth;

$$
B_{0}=\mu_{m} / R_{c}^{3}, \quad \mu_{m}=8 \cdot 10^{6} T 1 \mathrm{~km}^{3}
$$

Generalized forces

$$
\begin{aligned}
& Q_{1}=-0.5 B_{0} \cos i|I| r\left(\operatorname{ctg} \psi \cos ^{2} \varphi+\psi^{-1} \sin ^{2} \varphi\right) \\
& Q_{2}=B_{0} I r \Delta[\cos \varphi \cos i-\sin \varphi \sin i \sin (\theta+u)]+\Delta Q_{2} \quad \text { (7) } \\
& Q_{3}=Q_{3 \psi}+B_{0} I r \Delta \sin i[\cos (\theta+u)+3 \sin \theta \sin u]
\end{aligned}
$$

where $\Delta=0.5 r\left(m_{2}-m_{1}\right) / m, \quad Q_{3 \psi}=0.5 B_{0} \operatorname{cosi}| | \mid r^{2} \sin \varphi \cos \varphi\left(\operatorname{ctg} \psi-\psi^{-1}\right)$

$$
\Delta Q_{2}=3 B_{0} I r \Delta \sin i \cos \theta \sin \varphi \sin u
$$

The tether under the action of a distributed load is bends

Mathematical model of motion

Nonlinear equation for determining the angle

ψ

$$
\begin{equation*}
r=L \gamma /\left[\sin ^{2} \varphi+\cos ^{2} \varphi(\psi / \sin \psi)^{2}\right]^{0.5} \tag{8}
\end{equation*}
$$

where γ - tether elongation
L - undeformed tether length
VERTICAL EQUILIBRIUM POSITIONS OF EDTS $\quad Q_{1,2,3}=0$

$$
\begin{gather*}
\theta_{1}=\frac{1}{2} \arcsin (\sigma), \quad \theta_{2}=\theta_{1}+\pi \tag{9}\\
\psi_{k}=\operatorname{arctg}\left[\frac{\mu|I|}{6 K m_{e} \cos ^{2} \theta_{k}}\right], \quad r_{k}=L \gamma \frac{\sin \psi_{k}}{\psi_{k}}, \quad \dot{\theta}_{k}=\dot{r}_{k}=\varphi=\dot{\varphi}=0
\end{gather*}
$$

where

$$
\sigma=\frac{\mu I\left(m_{2}-m_{1}\right)}{3 K m_{1} m_{2}}, \quad k=1,2
$$

Static stability condition $\quad|\sigma|<1$

$$
\begin{equation*}
d y / d \tau=A y \tag{11}
\end{equation*}
$$

where $\tau=\Omega t$-dimensionless time,
Ω - angular orbital velocity,

$$
y=(\Delta \theta, \Delta \dot{\theta}, \Delta r, \Delta \dot{r}, \varphi, \Delta \dot{\varphi}) \quad \text { - vector of deviations from equilibrium positions }
$$

$$
A=\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & 0 & 0 \tag{12}\\
A_{21} & 0 & 0 & A_{24} & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
A_{41} & A_{42} & A_{43} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & A_{65} & 0
\end{array}\right)
$$

where

$$
\begin{aligned}
& A_{21}=-3 \cos 2 \theta_{1,2}, \quad A_{26}=-2 / r_{1,2}, \quad A_{41}=-3 r_{1,2} \sin 2 \theta_{1,2}, \quad A_{42}=2 r_{1,2} \\
& A_{43}=3 \cos ^{2} \theta_{1,2}-|b| \operatorname{ctg} \psi_{1,2}-\frac{r_{1,2}|b| \psi_{1,2}^{2}}{L \gamma \sin ^{2} \psi_{1,2}\left(\sin \psi_{1,2}-\psi_{1,2} \cos \psi_{1,2}\right)}
\end{aligned}
$$

Instability of the linearized system

Characteristic equation

$$
|A-\lambda E|=0
$$

or

$$
\left(\lambda^{4}+a \lambda^{2}+b \lambda+c\right)\left(\lambda^{2}+d\right)=0
$$

where

$$
d>0, \quad b=-6 \sin 2 \theta_{1}=\frac{2 B_{O} I\left(m_{2}-m_{1}\right)}{m_{1} m_{2} \omega^{2}}
$$

Eigenvalues

$$
\lambda_{1,2}=x_{1} \pm i x_{2}, \quad \lambda_{3,4}=x_{3} \pm i x_{4}, \quad \lambda_{5,6}= \pm i x_{5}
$$

Always one real part is positive (Instability)

$$
\left(x_{1}>0, x_{3}<0\right) \quad \text { or } \quad\left(x_{1}<0, x_{3}>0\right)
$$

When $b=0 \quad$ all roots are imaginary.

Typical behavior of EDTS

Numerical results

Instability in the orbital plane

Bending the tether

Typical behavior of EDTS

Numerical results

Fluctuations in the plane of the orbit

Instability of bending vibrations of the tether

Lorentz force

$$
\begin{equation*}
\mathbf{F}=L(\mathbf{I} \times \mathbf{B}) \tag{1}
\end{equation*}
$$

The moment of the Lorentz force

$$
\begin{equation*}
\mathbf{M}=\mathbf{r}_{D} \times \mathbf{F} \tag{2}
\end{equation*}
$$

To stabilize the movement of the EDTS near the vertical , the following are used corrections to the nominal current value

$$
\begin{equation*}
I=I_{n}+\Delta I \tag{3}
\end{equation*}
$$

Moreover, the current does not change direction

Linearized equations with control

$$
\begin{equation*}
d y / d \tau=A y+m u \tag{4}
\end{equation*}
$$

where

$$
u=\Delta I, \quad m=\left(0, \frac{B_{O}}{2 m_{b} \Omega^{2}}, 0, \frac{B_{O}}{2 m_{e} \Omega^{2}}, 0,0\right)^{T}
$$

Controller synthesis

$$
\begin{equation*}
\Delta I=K_{\dot{\theta}} \dot{\theta}+K_{\dot{r}} \dot{r}+K_{\theta} \Delta \theta+K_{r} \Delta r \tag{5}
\end{equation*}
$$

where $K_{\dot{\theta}}, K_{\dot{r}}, K_{\theta}, K_{r} \quad$ - feedback coefficients
Quadratic optimality criterion

$$
\begin{equation*}
J=\int_{0}^{\tau_{k}}\left(y^{T} a y+c u^{2}\right) d \tau \tag{6}
\end{equation*}
$$

Controller synthesis

Weight coefficients of the optimality criterion

$$
a=D \quad \text { - diagonal matrix }
$$

Relationship between coefficients

$$
\begin{equation*}
c+\sum a_{i i}=1, \quad a_{i i}=a, \quad a / c=v \tag{8}
\end{equation*}
$$

The Bellman dynamic programming principle is used
Bellman 's condition

$$
\begin{equation*}
\min _{u}\left[\frac{\partial V}{\partial y}(A y+m u)+y^{T} a y+c u^{2}\right]=0 \tag{9}
\end{equation*}
$$

Optimal control

$$
\begin{equation*}
u^{o}=-\frac{1}{2 c} \frac{\partial V}{\partial y} m \tag{10}
\end{equation*}
$$

The Bellman equation

$$
\begin{equation*}
\frac{\partial V}{\partial y} A y+y^{T} a y-\frac{1}{2 c}\left(\frac{\partial V}{\partial y} m\right)^{2}=0 \tag{11}
\end{equation*}
$$

Solving the Bellman equation

$$
\begin{equation*}
V=y^{T} B y \tag{12}
\end{equation*}
$$

where $B \quad$ - positive definite symmetric matrix

The matrix B from the solution of a system of nonlinear equations is determined by

$$
\begin{equation*}
B A+A^{T} B+a-\frac{1}{c} B m m^{T} B=0 \tag{13}
\end{equation*}
$$

Numerical results

Relations for weight coefficients

$$
a / c=v=0.01
$$

Feedback coefficients

$$
K_{\dot{\theta}}=-0.1168, K_{\dot{r}}=-0.1002, K_{\theta}=-0.0007, K_{r}=-0.1782
$$

Motion of system on the phase plane

Flexural vibrations of the tether

Numerical results

An example of motion instability when $\quad K_{\dot{r}}=K_{r}=0$

Flexural vibrations of the tether

Large deformation of the tether

Using a bare conductive tether

When the conductive tether moves in the

Earth's magnetic field, an electric field is induced and a current arises

The intensity of the electric field in the projection on the direction of the tether

$$
\begin{equation*}
E_{m}=\left(\mathbf{V}_{\mathbf{r}} \times \mathbf{B}\right) \cdot \boldsymbol{\tau} \tag{1}
\end{equation*}
$$

The current on an conductive tether is distributed unevenly along the length of the tether $I(s)$

Lorentz force acting on the tether

$$
\begin{equation*}
\mathbf{F}=\int_{L} I(s)(\boldsymbol{\tau} \times \mathbf{B}) d s \tag{2}
\end{equation*}
$$

CURRENT DISTRIBUTION ALONG THE TETHER

Equations determining the current distribution over the tether:

$$
\begin{equation*}
\frac{d I}{d s}=q_{e} n_{\infty} D f(\Delta V), \quad \frac{d \Delta V}{d s}=-\frac{I}{\sigma A}-E_{m} \tag{3}
\end{equation*}
$$

where

$$
f(\Delta V)=\left\{\begin{array}{lr}
0 & \text { if } \Delta V \leq 0 \\
-\left(2 q_{e} \Delta V / m_{e}\right)^{0.5} & \text { if } \Delta V>0
\end{array}\right.
$$

ΔV - potential difference, $\quad q_{e}$ - electron charge, $\quad D$-tether diameter,
n_{∞} - plasma concentration, $\quad \sigma$ - electrical conductivity of the tether material.
This source is used:
Xin Chen and J. R. Sanmartín Bare-tether cathodic contact through thermionic emission by low-work-function materials // Physics of Plasmas.
American Institute of Physics. 19, 073508 (2012), pp. 1-9.

Equations (3) in dimensionless form
Where $\varepsilon=s / L_{0}, \quad \gamma=I / I_{0}$,

$$
\begin{aligned}
& \lambda=\Delta V / V_{0}, \\
& L_{0}, I_{0}, V_{0} \quad \text { - characteristic values. }
\end{aligned}
$$

Current distribution
A - Anode, C - Cathode, B - the point of zero potential

CURRENT DISTRIBUTION ALONG THE TETHER

Example of calculating the current distribution over a tether:

$$
\begin{aligned}
& m_{2}=m_{A}=2 \mathrm{~kg}, \quad m_{1}=m_{c}=6 \mathrm{~kg}, \quad \rho=0.25 \mathrm{~kg} / \mathrm{km}, \quad L=2 \mathrm{~km} \\
& I_{c}=0.1 \mathrm{~A}, \quad D=1 \mathrm{~mm}, \quad \sigma=3.4 \cdot 10^{7} O \mathrm{Om}^{-1} \mathrm{~m}^{-1}(\mathrm{Al})
\end{aligned}
$$

Current distribution

Potential difference

Equations of spatial angular motion of the EDTS

$$
\begin{align*}
& \ddot{\theta}+\ddot{\vartheta}-2(\dot{\theta}+\dot{\vartheta}) \dot{\varphi} \operatorname{tg} \varphi+1.5 v^{-1} \dot{\vartheta}^{2} \sin 2 \theta=Q_{\theta} / m_{e} L^{2} \cos ^{2} \varphi \tag{8}\\
& \ddot{\varphi}+\left[0.5(\dot{\theta}+\dot{\vartheta})^{2}+1.5 v^{-1} \dot{\vartheta}^{2} \cos ^{2} \theta\right] \sin 2 \varphi=Q_{\varphi} / m_{e} L^{2} \tag{9}
\end{align*}
$$

where $\quad m_{e}=\frac{1}{M}\left(m_{1} m_{2}+\frac{1}{3} m_{1} m_{t}+\frac{1}{3} m_{2} m_{t}+\frac{1}{12} m_{t}^{2}\right), v=1+e \cos \vartheta$,
e-eccentricity, $\quad \vartheta$ - the true anomaly,
$Q_{\theta}=B_{0} J(L) L \Delta[\cos \varphi \cos i-\sin \varphi \sin i \sin (\theta+u)]+\Delta Q_{\theta}$,
$Q_{3}=B_{0} J(L) L \Delta \sin i[\cos (\theta+u)+3 \sin \theta \sin u]$,
$\Delta Q_{\theta}=3 B_{0} J(L) r \Delta \sin i \cos \theta \sin \varphi \sin u, \quad J(L)=\int_{0}^{L} I(s) d s$,
Δ - arm of the resultant the Lorentz force,
u - latitude argument, m_{t} - tether mass

Equations of motion of the center of mass in the orbital elements of the EDTS

$$
\begin{aligned}
& \frac{d A}{d t}=2 v \sqrt{\frac{A^{3}}{K\left(1-q^{2}-k^{2}\right)}}\left[a_{s} \frac{q \sin u-k \cos u}{v}+a_{t}\right] \\
& \frac{d q}{d t}=\sqrt{\frac{p}{K}}\left[a_{s} \sin u+a_{t}\left(1+\frac{1}{v}\right) \cos u+\frac{1}{v}\left(q a_{t}+k a_{w} c \operatorname{tg} i \sin u\right)\right] \\
& \frac{d k}{d t}=\sqrt{\frac{p}{K}}\left[-a_{s} \cos u+a_{t}\left(1+\frac{1}{v}\right) \sin u+\frac{1}{v}\left(k a_{t}-q a_{w} \operatorname{ctg} i \sin u\right)\right] \\
& \frac{d i}{d t}=\frac{a_{w}}{v} \sqrt{\frac{p}{K}} \cos u, \quad \frac{d \Omega}{d t}=\frac{a_{w}}{v} \sqrt{\frac{p}{K}} \frac{\sin u}{\sin i}, \quad \frac{d u}{d t}=\frac{1}{v} \sqrt{\frac{p}{K}}\left[v^{3} \frac{K}{p^{2}}-a_{w} c t g i \sin u\right]
\end{aligned}
$$

where A - large semi-axis, $\quad q=e \cos \omega_{\pi}, k=e \sin \omega_{\pi}$, ω_{π} - the pericenter argument, Ω - longitude of the ascending node,
a_{s}, a_{t}, a_{w} - acceleration components from the Lorentz force along the axes of the orbital coordinate system $C x_{o} y_{o} z_{o}$

NUMERICAL RESULTS

The movement of the EDTS in an almost circular orbit with an inclination $i=0$

$$
m_{1}=6 \mathrm{~kg}, m_{2}=2 \mathrm{~kg}
$$

$$
\dot{\theta} \cdot 10^{-3}, c^{-1}
$$

θ

Oscillations on the phase plane

$$
Н, \kappa м
$$

Changing the altitude of the orbit. The TS for lowering the orbit is used

Fluctuations of the EDTS in an elliptical orbit with inclination

$$
e=0.01 \quad i=\pi / 3
$$

Oscillations in the plane of the orbit

Oscillations outside the plane of the orbit

NUMERICAL RESULTS

Changing the parameters of the elliptical orbit

$$
e=0.011 \quad i=\pi / 3
$$

$A-R_{3}$, км

The large semi-axis minus the average radius of the Earth

Eccentricity

Changing the parameters of the elliptical orbit

$$
e=0.011 \quad i=\pi / 3
$$

Inclination of the orbit

Longitude of the ascending node of the orbit

1. In the initial state, until the moment of separation, the system is a regular triangle and the solid body.
2. In the final state, the system is a the right triangle that rotates at a given angular velocity.

Composition of the control system:

1. Low-thrust jet engines located on satellites.
2. Control mechanisms for the release of tethers for regulating tension forces, working only on their braking

Lagrange`s equations

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial T_{C}}{\partial q_{\xi}}\right)-\frac{\partial T_{C}}{\partial q_{j}}=-\frac{\partial \Pi}{\partial q_{j}}+Q_{q_{j}} \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& q_{1}=l_{1}, q_{2}=l_{2}, q_{3}=\theta_{1}, q_{4}=\theta_{2} \\
& \quad-\text { generalized coordinates, } \\
& T_{C}, \Pi \text { - kinetic and potential energies of } \\
& \text { the system, }
\end{aligned}
$$

$Q_{q_{j}}$ - generalized non-potential forces.

Mathematical model of motion

$$
\begin{align*}
& m \mu_{1}\left(\mu_{2}+\mu_{3}\right)\left\{\ddot{l}_{1}-l_{1}\left[\left(\dot{\theta}_{1}+\omega\right)^{2}+\omega^{2}\left(3 \cos ^{2} \theta_{1}-1\right)\right]\right\}+ \\
& +m \mu_{1} \mu_{3}\left\{\left[\ddot{l}_{2}-l_{2} \dot{\theta}_{2}\left(\dot{\theta}_{2}+2 \omega\right)\right] \cos \Delta \theta+\left[l_{2} \ddot{\theta}_{2}+2 \dot{l}_{2}\left(\dot{\theta}_{2}+\omega\right)\right] \sin \Delta \theta-3 \omega^{2} l_{2} \cos \theta_{1} \cos \theta_{2}\right\}=Q_{l_{1}} \tag{2}\\
& m \mu_{3}\left(\mu_{1}+\mu_{2}\right)\left\{\ddot{l}_{2}-l_{2}\left[\left(\dot{\theta}_{2}+\omega\right)^{2}+\omega^{2}\left(3 \cos ^{2} \theta_{2}-1\right)\right]\right\}+ \tag{3}\\
& +m \mu_{1} \mu_{3}\left\{\left[\ddot{l}_{1}-l_{1} \dot{\theta}_{1}\left(\dot{\theta}_{1}+2 \omega\right)\right] \cos \Delta \theta-\left[l_{1} \ddot{\theta}_{1}+2 \dot{l}_{1}\left(\dot{\theta}_{1}+\omega\right)\right] \sin \Delta \theta-3 \omega^{2} l_{1} \cos \theta_{1} \cos \theta_{2}\right\}=Q_{l_{2}}
\end{align*}
$$

$m \mu_{1}\left(\mu_{2}+\mu_{3}\right) l_{1}^{2}\left[\ddot{\theta}_{1}+2\left(\dot{l}_{1} / l_{1}\right)\left(\dot{\theta}_{1}+\omega\right)+3 \omega^{2} \sin \theta_{1} \cos \theta_{1}\right]+m \mu_{1} \mu_{3} l_{1} l_{2}\left\{3 \omega^{2} \sin \theta_{1} \cos \theta_{2}+\right.$

$$
\left.+\left[\ddot{\theta}_{2}+2\left(\dot{l}_{2} / l_{2}\right)\left(\dot{\theta}_{2}+\omega\right)\right] \cos \Delta \theta+\left[\left(\dot{\theta}_{2}+\omega\right)^{2}-\omega^{2}-\left(\ddot{l}_{2} / l_{2}\right)\right] \sin \Delta \theta\right\}=Q_{\theta_{1}}
$$

$$
m \mu_{3}\left(\mu_{1}+\mu_{2}\right) l_{2}^{2}\left[\ddot{\theta}_{2}+2\left(\dot{l}_{2} / l_{2}\right)\left(\dot{\theta}_{2}+\omega\right)+3 \omega^{2} \sin \theta_{2} \cos \theta_{2}\right]+m \mu_{1} \mu_{3} l_{1} l_{2}\left\{3 \omega^{2} \sin \theta_{2} \cos \theta_{1}+\right.
$$

$$
\begin{equation*}
\left.+\left[\ddot{\theta}_{1}+2\left(\dot{l}_{1} / l_{1}\right)\left(\dot{\theta}_{1}+\omega\right)\right] \cos \Delta \theta+\left[\omega^{2}-\left(\dot{\theta}_{1}+\omega\right)^{2}+\left(\ddot{l}_{1} / l_{1}\right)\right] \sin \Delta \theta\right\}=Q_{\theta_{2}} \tag{5}
\end{equation*}
$$

where $\quad m=\sum_{k=1}^{3} m_{k}, \mu_{k}=m_{k} / m, \quad \Delta \theta=\theta_{1}-\theta_{2}$.

Nominal deployment program

$>$ The law of change of tension forces

$$
\begin{equation*}
T_{k}=T_{k}^{0}+p_{k}\left(l_{k}-L_{d_{k}}\right)+w_{k} \dot{l}_{k}, k=\overline{1,3} \tag{9}
\end{equation*}
$$

where

$$
p_{k}, w_{k} \text { - feedback coefficients, }
$$

$L_{d_{k}}$ - final tether lengths,
T_{k}^{0} - the magnitude of the tension forces in the ideal case when the configuration of the system is a "symmetrical triangle". When $\quad F_{k}=0, \ddot{l}_{k}=\dot{l}_{k}=0, \ddot{\theta}_{k}=0$

$$
\begin{aligned}
& T_{k}^{0}=m l_{k}\left(\dot{\theta}_{k}+\omega\right)^{2} / 9, k=1,2 \\
& T_{3}^{0}=m l_{3}\left(\dot{\theta}_{2}+\omega\right)^{2} / 9
\end{aligned}
$$

> The law for reactive Forces

$$
F_{k}=\left\{\begin{array}{l}
F, \text { при } t<t_{e} \tag{10}\\
0, \quad \text { при } t \geq t_{e}
\end{array}, k=\overline{1,3} .\right.
$$

where t_{e} - the moment of switching off the low-thrust engines.
> Example of a nominal program

Changing the length of the tethers

Changing the rotation speed of the tethers

Equations of motion of the centers of mass NS

$$
\begin{align*}
& m_{1} \ddot{\mathbf{R}}_{1}=\mathbf{G}_{1}+\mathbf{T}_{1}-\mathbf{T}_{3}+\mathbf{F}_{1}, \tag{14}\\
& m_{k} \ddot{\mathbf{R}}_{k}=\mathbf{G}_{k}+\mathbf{T}_{k}-\mathbf{T}_{k-1}+\mathbf{F}_{k}, k=2,3,
\end{align*}
$$

where

$$
\mathbf{G}_{k}=-\mu_{e} m_{k} \mathbf{R}_{k} / R_{k}^{3}-\text { gravitational forces. }
$$

$\mathbf{T}_{k}, \mathbf{F}_{k}$ - tension forces and reactive forces.

$$
\begin{gather*}
\mathbf{T}_{k}=T_{k} \frac{\Delta \mathbf{r}_{k}}{\Delta r_{k}} \tag{15}\\
T_{k}=\left\{\begin{array}{cc}
E S \frac{\Delta r_{k}-L_{k}}{L_{k}}, & \Delta r_{k}-L_{k} \geq 0 \\
0, & \Delta r_{k}-L_{k}<0
\end{array}\right.
\end{gather*}
$$

where $E S$ - stiffness of the tether material.

Mathematical model of the movement of the TS "triangle" taking into account the movements of the NS relative to its centers of mass

Equations that take into account the dynamics of the release mechanism of tethers

$$
\begin{equation*}
m_{e} \ddot{L}_{k}=T_{k}-U_{k}, k=\overline{1,3}, \tag{16}
\end{equation*}
$$

where m_{e} - coefficient of inertia of control mechanisms.
$L_{k} \quad$ - undeformed tether length
Controlling forces $\quad U_{k}$

$$
\begin{equation*}
U_{k}=p_{g}\left(L_{k}-l_{k}\right)+w_{g}\left(\dot{L}_{k}-\dot{l}_{k}\right), k=\overline{1,3}, \tag{17}
\end{equation*}
$$

feedback coefficients. nominal values. feedback coefficients. nominal values.

Mathematical model of the movement of the TS "triangle" taking into account the movements of the NS relative to its centers of mass

Equations describing angular motions of satellites

$$
\begin{align*}
& \dot{\boldsymbol{\omega}}_{k}=J_{k}^{-1}\left(\mathbf{M}_{k}-\boldsymbol{\omega}_{k} \times J_{k} \boldsymbol{\omega}_{k}\right), k=\overline{1,3}, \tag{18}\\
& \dot{\mathbf{e}}_{x k}=\boldsymbol{\omega}_{k} \times \mathbf{e}_{x k}, \dot{\mathbf{e}}_{y k}=\boldsymbol{\omega}_{k} \times \mathbf{e}_{y k}, \dot{\mathbf{e}}_{z k}=\boldsymbol{\omega}_{k} \times \mathbf{e}_{z k}, \tag{19}
\end{align*}
$$

where
$\boldsymbol{\omega}_{k}$ - the angular velocity of the satellite,
J_{k} - satellite inertia tensor,
$\mathbf{e}_{x k}, \mathbf{e}_{y k}, \mathbf{e}_{z k}-$ orts of related coordinate systems

$$
c_{k} x_{k} y_{k} z_{k}, k=\overline{1,3} .
$$

Angle between the directions of the tethers and the characteristic axes of the satellites

$$
\begin{gather*}
\alpha_{k}=\arccos \left(\frac{\Delta \mathbf{r}_{k} \cdot \mathbf{e}_{x k}}{\Delta r_{k}}\right), k=\overline{1,3} ; \alpha_{1}^{(3)}=\arccos \left(\frac{\Delta \mathbf{r}_{3}^{\prime} \cdot \mathbf{e}_{x 1}}{\Delta r_{3}}\right) \tag{20}\\
\alpha_{k}^{(k-1)}=\arccos \left(\frac{\Delta \mathbf{r}_{k-1}^{\prime} \cdot \mathbf{e}_{x k}}{\Delta r_{k-1}}\right), k=2,3
\end{gather*}
$$

Simulation results based on a more complete model

(a) - Changing tethers lengths from time;
(b) - Changing the speed of rotation of tethers from time; (dashed line - nominal value) ;
(c) - Trajectories of NS relative to the center of mass of the TS $(0,0)$.

Simulation results based on a more complete model

In the figures, the angles between the characteristic axes of the NS and the tethers are given

(a) - The angle between the axis ($c_{3} x_{3}$) NS 3 and the direction of the tether 3 (in the nominal case: $\alpha_{3}=0$);
(b) - The angle between the axis $\left(c_{1} x_{1}\right)$ NS 1 and the direction of the tether 3 (in the nominal case : $\alpha_{1}^{(3)}=\pi / 3$);
(c) - The change in the component of the angular velocity of NS 2 from time.

Publications close to the topic of the lecture

1. Zabolotnov Yu. M. Control of the deployment of a tethered orbital system with a small load into a vertical position // 2015. J. of Applied Mathematics and Mechanics. 79(1), pp.28-34.
2. Zabolotnov Yu. M. Control of the Deployment of an Orbital Tether System That Consists of Two Small Spacecraft // 2017. Cosmic Research 55 (3), pp. 224-233
3. Voevodin P. S. and Zabolotnov Yu. M. Stabilizing the Motion of a Low-Orbit Electrodynamic Tether System // Journal of Computer and Systems Sciences International. 2019. V. 58. No. 2. P. 270-285.
4. Voevodin P. S. and Zabolotnov Yu. M. Analysis of the Dynamics and Choice of Parameters of an Electrodynamic Space Tether System in the Thrust Generation Mode // Cosmic Research. 2020. V. 58. No. 1. P. 42-52.
5. Voevodin P. S. and Zabolotnov Yu. M. On Stability of the Motion of Electrodynamic Tether System in Orbit Near the Earth // Mechanics of Solids. 2019. V. 54. P. 890-902.
6. Wang Ch., Zabolotnov Yu. M. Analysis of the Dynamics of the Formation of a Tether Group of Three Nanosatellites Taking into Account Their Motion around the Centers of Mass // Mechanics of Solids, 2021, Vol. 56, No. 7, pp. 1181-1198.
7. Zabolotnov Yu. M., Voevodin P. S., Lu Hongshi A Two-Stage Method for the Formation of a Rotating Electrodynamic Space Tether System // Mechanics of Solids, 2022, Vol. 57, No. 3, pp. 462-475.
8. Zabolotnov Yu. M., and Nazarova A. A. Method of Forming a Triangular Rotating Tethered Constellation of Spacecraft Using Electromagnetic Forces // Journal of Computer and Systems Sciences International, 2022, Vol. 61, No. 4, pp. 677-692.
9. Zabolotnov Yu. M., Nazarova A. A., Changqing Wang, Aijun Li The Dynamics of Arranging a Spacecraft Tether Group as a Triangular Constellation // Cosmic Research, 2022, Vol. 60, No. 5, pp. 375-386.
10. Chen S., Zabolotnov Yu. M. A method of forming a tethered constellation of microsatellites in the form of a regular triangle, taking into account their motion relative to the centers of mass // Journal of Computer and Systems Sciences International. 2023. Vol. 62. No. 2.

САМАРСКИЙ УНИВЕРСИТЕТ
SAMARA UNIVERSITY

Thank you for attention

