САМАРСКИЙ УНИВЕРСИТЕТ

SAMARA UNIVERSITY

XVII International Summer Space School: Future Space Technologies and Experiments in Space

Solar sail

Prof. Olga L. Starinova

Samara National Research University 04 Sep 2023

Solar sailing

Solar power pressure

Solar power pressure

Figure 1 - Thrust magnitude and direction for a perfectly reflective sail

Figure 2 - Thrust magnitude and direction for a non-perfectly reflective sail

The value of light pressure on the orbits of the planets of the Solar system

Planet	Absorbing sail	Perfectly reflective sail
Mercury	$3,1 \cdot 10^{-5}$	$6,2 \cdot 10^{-5}$
Venus	$8,9 \cdot 10^{-6}$	$1,78 \cdot 10^{-5}$
Earth	$4,64 \cdot 10^{-6}$	$9,28 \cdot 10^{-6}$
Mars	$2,0 \cdot 10^{-6}$	$4,0 \cdot 10^{-6}$
Jupiter	$1,7 \cdot 10^{-7}$	$3,4 \cdot 10^{-7}$

Design parameters of solar sails

Spacecraft project date, year

уп. Московское шоссе, д.34, г.Самара, 443086, теп.: +7 (846) 335-18-26, факс: +7 (846) 335-18-36, caйт: www.ssau.ru, e-mail: ssau®ssau.ru

Design types of solar sails

Parabolic Sail

(Solar Photon Truster)

Hollow Body (Pillow Sail)

Parachute Sail

Inflatable

Rotary-Type Solar Sail

Square Sail (Yankee Clipper)

Frame-Type Solar Sail

Satellites repeaters Echo 1 and Echo 2

Satellites repeaters Echo-1 (12.08.1960) и Echo-2 (25.01.1964)

IKAROS - the first interplanetary solar sail spacecraft

уп. Московское шоссе, д.34, г.Самара, 443086, теп.: +7 (846) 335-18-26, факс: +7 (846) 335-18-36, caйт: www.ssau.ru, e-mail: ssau@ssau.ru

Nano-sails on nanosatellites from Nanosail D2 to NEA Scout

Sunjummer or L'Garde

уп. Московское шоссе, д.34, г.Самара, 443086, теп.: +7 (846) 335-18-26, факс: +7 (846) 335-18-36, caйт: www.ssau.ru, e-mail: ssau®ssau.ru

- the mass of a spacecraft is 100 kg and the total area of a solar sail is $10,000 \mathrm{~m}^{2}$;
- the film thickness is 3.5 micrometer;
- the area to the mass ratio of the solar sail spacecraft is $100 \mathrm{~m}^{2} / \mathrm{kg}$;
- the optical parameters $\rho=0.98, \zeta=0.94, \varepsilon_{\mathrm{f}}=0.05, \varepsilon_{\mathrm{b}}=0.55$;
- the degraded parameters $d_{\rho}=0.1, \delta_{\rho}=0.231, d_{\zeta}=0.1, \delta_{\zeta}=0.139, d_{\varepsilon f f}=0.1, \delta_{\varepsilon f i}=0.231$;
- $T_{\text {max }}=1000 \mathrm{~K}$.

Our Solar sail spacecraft Helios

1 - Antenna-feeder device
2 - Orientation system devices
3 - Photo equipment
4 - Automatic control unit
5 - Solar panel
6 - Process connector
7 - Fixing pipe
8 - Attachment of solar sail
9 - Separation device
10 - Pin sensor
11 - Electron-optical equipment
12 -Deploying mechanism
13 - Frame Space craft
14 - Attachment of the solar panel

Our Solar sail spacecraft Helios

A six dimensional state $\mathbf{x}(t)=\left(\begin{array}{llllll}r & u & V_{r} & V_{\varphi} & \Omega & i\end{array}\right)^{T} \in \mathbf{X}$ describes a solar sail motion in heliocentric frame. Criterion of optimality - minimum flight time for a given mission's aim

$$
\mathbf{u}_{o p t}(t)=\underset{\mathbf{u}(t) \in \mathbf{U}}{\arg \min }\left\{t_{m}(\mathbf{u}(t), \mathbf{x}(t)) \mid \mathbf{x}\left(t_{0}\right)=\mathbf{x}_{0}, \mathbf{x}\left(t_{k}\right)=\mathbf{x}_{k}, T(t) \leq T_{\max }\right\}
$$

Thrust vector of the solar sail:

$$
\begin{aligned}
& F_{\perp}=2 \frac{S_{r}}{c} S \cdot \cos \vartheta \cdot\left(a_{1} \cos \vartheta+a_{2}\right) \\
& F_{| |}=2 \frac{S_{r}}{c} S \cdot \cos \vartheta \cdot a_{3} \sin \vartheta \\
& a_{1}=\frac{1}{2}(1+\varsigma \rho)
\end{aligned}
$$

$$
\begin{gathered}
\text { Sail }, \prime \prime \\
\text { normal }
\end{gathered}
$$

$$
a_{2}=\frac{1}{2}\left(B_{f}(1-\varsigma) \rho+(1-\rho) \frac{\varepsilon_{f} B_{f}-\varepsilon_{b} B_{b}}{\varepsilon_{f}+\varepsilon_{b}}\right) \quad a_{3}=\frac{1}{2}(1-\varsigma \rho)
$$

$\dot{r}=V_{r}$,
$\dot{V}_{r}=\frac{V_{\theta}^{2}}{r}+\frac{V_{\varphi}{ }^{2} \sin ^{2} \varphi}{r \sin ^{2} \theta}-\frac{G M}{r^{2}} f+\frac{G M}{c^{2} r^{2}} f^{-1} V_{r}{ }^{2}+\frac{f V_{\varphi}^{2}}{r}+\frac{2 G J}{c^{2} r^{3}} f V_{\varphi}+a_{r}+f_{r}$,
$\dot{\varphi}=\frac{V_{\varphi}}{r \sin \theta}$,
$\dot{V}_{\varphi}=-\frac{V_{r} V_{\varphi}}{r}-\frac{V_{\varphi} V_{\theta} \cos \theta}{r \sin \theta}+\frac{2 G J}{c^{2} r^{3}} V_{r}+a_{\varphi}+f_{\varphi}$,
$\dot{\theta}=\frac{V_{\theta}}{r}$,
$\dot{V}_{\theta}=\frac{V_{\varphi}{ }^{2} \cos \theta}{r \sin \theta}-\frac{V_{r} V_{\theta}}{r}-\frac{4 G J}{c^{2} r^{2}} \frac{V_{\varphi}}{r} \cos \theta+a_{\theta}+f_{\theta}$.

Temperature of sail surface

If we do not take into account the dependence of the optical coefficients of the sail surface on the temperature and surface degradation due to the effects of space factors, the equilibrium temperature can be calculated by formula

$$
T=\left(\frac{S_{r}}{\sigma_{S B}} \frac{1-\rho}{\varepsilon_{f}+\varepsilon_{b}}\left(\frac{r_{0}}{r}\right)^{2} \cos \vartheta\right)^{1 /}
$$

Here $\sigma_{S B}=5,67 \cdot 10^{-8} \mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-4}$ is the Stefan-Boltzmann constant.

Sun as an extended source of radiation pressure

m is the Sun radius.
Our design model of sail has a following optical parameters:
$\rho=0.88, \varepsilon_{\mathrm{f}}=0.05, \varepsilon_{\mathrm{b}}=0.55$

Dependence the surface equilibrium temperature to the heliocentric distance and the installation angle

Degradation of sail surface

The change in the optical parameter p in time depends on the total dose of solar radiation obtained the sail

$$
\frac{p(t)}{p_{0}}=\left\{\begin{array}{cc}
\frac{1+d e^{-\lambda \Sigma(t)}}{1+d} & \text { if } p \in\{\rho, \varsigma\} \\
1+d\left(1-e^{-\lambda \Sigma(t)}\right) & \text { if } p=\varepsilon_{f} \\
1 & \text { if } p \in\left\{\varepsilon_{b}, B_{f}, B_{b}\right\}
\end{array} \quad \tilde{\Sigma}_{0}=15,768 \cdot 10^{12}\right.
$$

Dependence the reflection coefficient of the sail surface to the lifetime

Dependence the emission coefficient of the sail surface to the lifetime

Mathematical model of the heliocentric movement

We use the planar Keplerian osculated elements to choosing control laws. All equations of Keplerian elements have form

$$
\frac{d K}{d t}=f_{1}(p, e, \vartheta) \cos ^{3} \lambda_{1}+f_{2}(p, e, \vartheta) \cos ^{2} \lambda_{1} \sin \lambda_{1}
$$

If we need keeping the element K constant, then steered angle has to be

$$
\left[\begin{array}{c}
\operatorname{tg} \lambda_{1}=-\frac{f_{1}(p, \mathrm{e}, \vartheta)}{f_{2}(p, e, \vartheta)}, \tag{2}\\
\lambda_{1}= \pm \frac{\pi}{2}
\end{array}\right.
$$

For the most rapid change of the Keplerian element steering angle has to be

$$
\begin{equation*}
\lambda_{1}=\frac{1}{2} \arcsin \frac{f_{2}(p, e, \vartheta)\left(f_{1}(p, e, \vartheta)-\sqrt{9 f_{1}(p, e, \vartheta)^{2}+8 f_{2}(p, e, \vartheta)^{2}}\right)}{3\left(f_{1}(p, e, \vartheta)^{2}+f_{2}(p, e, \vartheta)^{2}\right)} \tag{3}
\end{equation*}
$$

$$
x\left(t_{0}\right)=\left(\begin{array}{l}
r_{E} \\
\varphi_{E} \\
V_{r E} \\
V_{\phi E} \\
i_{E} \\
\Omega_{T}
\end{array}\right) \quad \square x\left(t_{k}\right)=\left(\begin{array}{l}
r_{P l} \\
\varphi_{P l} \\
V_{r P l} \\
V_{\phi P l} \\
i_{P l} \\
\Omega_{P l}
\end{array}\right)
$$

Initial moment of the system (Earth heliocentric parameters)

Final moment of the system (Planet heliocentric parameters)

Step of numerical solution (1)
Control angle

$$
\sin \vartheta=\frac{r V_{\varphi} V_{r}}{\sqrt{\left(r V_{r}^{2}-1\right)^{2}+\left(r V_{\varphi} V_{r}\right)^{2}}}
$$ calculation by

(2) or (3)

$$
\cos \vartheta=\frac{r V_{r}^{2}-1}{\sqrt{\left(r V_{r}^{2}-1\right)^{2}+\left(r V_{\varphi} V_{r}\right)^{2}}}
$$

$$
e=\sqrt{\left(r V_{r}^{2}-1\right)^{2}+\left(r V_{\varphi} V_{r}\right)^{2}}
$$

$$
p=r(1+e \cos \vartheta)
$$

decrease semi-major axes direct integration Earth decrease eccentricity contrary integration Venus exact optimal solution

Modeling of SSSP to Venus flight

The orbit parameters were selected in two stages:
Stage 1 - the fastest reduction of the semi-axis (165 days).
Stage 2 - the fastest reduction of eccentricity (78 days).
The heliocentric movement of SSSP to Venus lasts 243.0 days. Including maneuver set parabolic speed, the full flight time is 593 days.

Start mass of spacecraft, kg	100
Area of sail, m^{2}	2000
Mirror reflection coefficient of the front surface of the sail (Be)	0,98
Secondary emission coefficient of the front surface of the sail (Be)	0,01
Secondary emission coefficient of the rear surface of the sail (Cr)	0,75
Date of withdrawal from the Earth	10.01 .2022
Duration of the phase of reduction of the radius of the pericenter, days	2102,7
The duration of the plot reduce the eccentricity of the orbit, days	37,5
Date of formation of the working orbit	14.10 .2027
The maximum steady-state temperature of the sail surface Be/Cr*, K	1139

a)

b)

The local-optimal control law (a) and the corresponding flight trajectory (b) without the temperature restriction

The dependence of the radial (a) and transversal components (b) of heliocentric velocity on flight duration without the temperature restriction

a)

b)

The dependence of the heliocentric radius-vector (a) and the equilibrium temperature (b) on flight duration without the temperature restriction

The flight trajectories to SSSC with $\sigma=20 \mathrm{~kg} / \mathrm{m}^{2}$ (a) and $\sigma=30 \mathrm{~kg} / \mathrm{m}^{2}$ (b) obtained with the help of our software

Results for flight to inter stars space

Start mass, kg	100
Area of sail, m2	2500
Reflection coefficient of front sail's surface (Be)	0,98
Emission coefficient of front sail's surface (Be)	0,01
Emission coefficient of back sail's surface (Cr)	0,75
Date of withdrawal from the Earth	10.01 .2022
The duration of plot of increasing the eccentricity of the orbit, days	15000
Date of leaving the Sun	12.10 .2076
he minimum heliocentric distance, A.U.	0,056
The maximum equilibrium temperature of the sail's surface Be/Cr*, K	480,26

Results for flight to inter stars space

Heliocentric radius-vector of SSSP

Radial projection of the SSSP velocity

Results for flight to inter stars space

Текуиее время, сут

Equilibrium temperature of SSSC surface

Results for flight to inter stars space

	Start mass, kg	100
	Area of surface, m^{2}	2500
8	Reflection coefficient of sail's front surface (Be)	0,98
7 -	Emission coefficient of sail's front surface (Be)	0,01
	Emission coefficient of sail's back surface (Cr)	0,75
	Date of the exit in the Earth action sphere	10.01.
5 -		2022
1	The length of the phase of increasing the orbit eccentricity, days	485,6
	Date of the gravity assist in the Earth action sphere	$\begin{array}{\|l} \hline 10.05 . \\ 2023 \\ \hline \end{array}$
	The duration of the phase of increase of the radius of apoapsis, days	2611
$2 / 4 \begin{array}{llll} 4 & 6 & 8 & 10 \end{array}$	Date of the gravity assist in the Jupiter action sphere	$\begin{aligned} & 3.07 . \\ & 2030 \end{aligned}$
\forall	Date of leaving the Sun's action sphere	$12.03 .204$
	The minimum heliocentric distance, A.U.	0,056
	The maximum equilibrium temperature of the sail's surface $\mathrm{Be} / \mathrm{Cr}^{*}$, $К$	480,26

Results for flight to inter stars space

Heliocentric radius-vector of SSSP

Radial projection of the SSSP velocity

Results for flight to inter stars space

Installation angle of SSSC

Equilibrium temperature of SSSC surface

уп. Московское шоссе, д.34, г.Самара, 443086, теп.: +7 (846) 335-18-26, факс: +7 (846) 335-18-36, caйт: www.ssau.ru, e-mail: ssau@ssau.ru

THANK YOU FOR YOUR ATTENTION

